Tag Archives: Texas blackouts

Wind and Solar Resource Availability Fatal Flaw

From Watts Up With That?

Roger Caiazza

As a retired electric utility meteorologist, I have been following issues associated with wind and solar resource availability for many years.  My thinking has evolved to the point where I now believe that in a rational world it would be recognized that any electric grid relying on wind and solar is doomed to failure.  This post explains why.

Background

The North American Electric Reliability Corporation (NERC) recently convened a webinar for the Cold Weather Preparedness Small Group Advisory Sessions (SGAS) to “provide an educational opportunity for registered entities to meet with NERC and Regional Entity representatives to discuss the cold weather preparedness Standards and possible compliance approaches in an open and non-audit environment.”  The impetus for this initiative was the February 2021 Texas event described in the following slide. The regulatory fallout for this event is not finished but the need to discuss how best to address these events is so acute that SGAS was established in “an open and non-audit environment”.

Source: May 6, 2024 NERC Cold Weather Preparedness Small Group Advisory Session

The takeaway point is that there are already electric grid resource adequacy issues in the existing system during extreme weather events. I am most concerned about the future grid that relies on weather impacted resources. Even though Texas has substantial wind and solar resources their presence did not contribute meaningfully to this Texas blackout. Instead, it was the failure of many components of the traditional generating and transmission systems to be sufficiently hardened to extreme cold. In the future the weather dependent grid will cause similar problems more frequently and, as I will show, may not be able to prevent a catastrophic blackout.

My primary concern is the feasibility for the New York Climate Act implementation plan. or more appropriately the lack of a proper feasibility analysis, that addresses the worst-case wind and solar energy resource drought.  In September 2021, I described the reliability challenges for the Climate Act described by the organizations responsible for electric system reliability.  All the credible analyses done for future grid reliability point out the expected worst-case scenario – When New York electrifies heating and transportation the peak load will be in the winter when temperatures are coldest.  The Integration Analysis identified a multi-day period winter wind lull.  The New York Independent System Operator has done similar analyses and showed that winter wind lulls that coincide with low solar availability and high loads will be the ultimate problem.  The New York Department of Public Service also has identified the Renewable Energy Gap as a major issue.  In my opinion, however, no analysis done to date has identified the worst-case scenario because they have all used relatively short periods of historical data.

All credible renewable resource projection analyses use historical meteorological data, projections of future load during those periods, and estimates of electric resource availability based on assumed deployment of wind, solar, energy storage, and other technologies needed to supply the expected load.  Hourly profiles of weather variables produced via the weather forecast modeling techniques are used to develop hourly demand forecasts and energy output profiles for wind and solar resources for the periods being studied.  The credible analyses only differ in their assumptions for the characteristics of the buildouts and the sophistication of potential availability based on climatological and geographical constraints.  Once the analysis is complete the resulting data can be used to identify the worst case.

The New York Independent System Operator (NYISO) is working with its consultant DNV to develop New York onshore wind, offshore wind, and solar resource availability.  Their analysis uses a 23-year historical meteorological database for the New York State renewable resource areas. Similar analyses are underway in other regional transmission operator regions.  It has also been recognized that larger areas need to be treated similarly.  The Electric Power Research Institute has a Low-Carbon Resources Initiative that has been looking at the North American continent.  Researchers outside of the industry have also done analyses of wind and solar power droughts using the ERA5 reanalysis data from 1950 to the present.  The reanalysis data analysis uses current weather forecast models and historical observations to provide hourly meteorological fields.  These data can be further refined to finer scales to project the wind and solar resource availability.

Results

All these analyses find there are periods of low renewable resource availability.  For example, the New York State Reliability Council Extreme Weather Working Group (EWWG) analyzed the high resolution NY offshore wind data provided by NYISO and its consultant DNV for offshore wind resources.  The summary of the report stated:

The magnitude, duration, and widespread geographic impacts identified by this preliminary analysis are quite significant and will be compounded by load growth from electrification. This highlights the importance of reliability considerations associated with offshore wind and wind lulls be accounted for in upcoming reliability assessments, retirement studies, and system adequacy reviews to ensure sufficiency of system design to handle the large offshore wind volume expected to become operational in the next five to ten years.

The NYISO/DNV analysis used a 21-year database.  In a similar type of analysis, the Independent System Operator of New England (ISO-NE) Operational Impact of Extreme Weather Events, the ERA5 data were used to prepare a database covering 1950 to 2021.  The analysis evaluated 1, 5, and 21-day extreme cold and hot events. 

One of the important results presented in the ISO-NE analysis was a table of projected system risk for weather events over the 72-year data record.  In the analysis, system risk was defined as the aggregated unavailable supply plus the exceptional demand during the 21-day event.  Note that the analysis considered sliding windows for the 21-day events by shifting the 21-day window every seven days.  The unsurprising point I want to highlight is that the system risk increases as the lookback period increases.  If the resource adequacy planning for New England only looked at the last ten years, then the system risk would be 8,714 MW, but over the whole period the worst system risk was 9,160 and that represents an resource increase of 5.1%.

Source: ISO-NE Operational Impact of Extreme Weather Events, available here

Note that there was an EWWG analysis of Historical Weather and Climate Extremes for New York performed by Judith Curry and myself that identified the January 1961 event as the probable worst-case scenario.  We found that there was a 15-day period from January 20 until February 3, 1961 that will likely turn out to be the worst-case cold wave. This was a period when high-pressure systems dominated the weather in the Northeast and those conditions mean light wind speeds.

Discussion

I do not think we can ever have an electric grid that will provide reliable power when it is needed the most. Today electric system resource adequacy planners don’t have to worry that many generating resources might not be available at the same time. In a future electric grid that relies on wind and solar the fact that those resources correlate in time and space is what I think is the insurmountable planning problem. All solar goes away at night and wind lulls affect entire regional transmission organization (RTO) areas at the same time. This issue is exacerbated by the fact that the wind lull will cover multiple RTO areas at the same time the highest load is expected.

The reason we can never trust a wind, solar, and energy storage grid is because if we depend on energy-limited resources that are a function of the weather, then a system designed to meet the worst-case is likely impractical. Consider the ISO-NE events where it was found that the most recent 10-year planning lookback period would plan for a system risk of 8,714 MW.  However, if the planning horizon covered the period back to 1961, the worst-case to 1950, an additional 446 MW would be required to meet the system risk.  I cannot imagine a business case for the deployment of energy storage or the magical dispatchable emissions free resource that will only be needed once in 63 years.  For one thing, the life expectancy of these technologies is much less than 63 years.  Even over a shorter horizon such as the last ten years, how will a required facility be able to stay solvent when it runs so rarely without subsidies and very high payments when they do run.

As I described in an earlier article, the New York Department of Public Service (DPS) Proceeding 15-E-0302 technical conference Zero Emissions by 2040  highlighted concerns about this Gap resource gap and how it could be addressed.  Besides the fact that the preferred candidate technologies have not been commercially proven, they all will be extraordinarily expensive.  I believe that makes worst-case solutions impractical.

On the other hand, the alternative to ignore the worst case is unacceptable.  In the net-zero fantasy world that is supposed to rely on wind and solar when heating and transportation is supposed to be electrified the need for reliable electricity is magnified. If we don’t provide resources for the observed worst case, when those conditions inevitably reoccur then there will be a blackout when electricity is needed the most to keep people from freezing to death in the dark because they are unable to flee.

The tradeoff between practicality and necessity is not going to be resolved by the resource adequacy planning groups doing the analyses described.  I don’t think organizations like the New York State Reliability Council or NERC will make the decisions either.  This is something that will have to be decided by politicians at the highest levels.  Hopefully the problem will be considered in an open and transparent manner, but political lobbying pressures will be immense because the viability of the politically correct current plan to depend on wind and solar in New York and elsewhere is threatened.

Conclusion

I have long argued that New York should perform a feasibility study to determine if the net-zero outline to comply with the Climate Act in the Scoping Plan could possibly work.  Francis Menton has convinced me that it would be better to do a demonstration project in some smaller jurisdiction to prove that it can work.   The described tradeoff between the practicality of deploying resources for the observed worst-case resource deficit and the necessity to do so to prevent a catastrophic blackout should be a key consideration in either workability evaluation.

In my opinion any electric system that depends on wind and solar is impractical.  Obviously, if the goal is a zero-emissions electric system then nuclear must be the cornerstone.  If affordability is a concern, then the pragmatic acceptance of a large reduction in emissions rather than a zero target would allow the use of some natural gas as proposed by Russell Schussler and myself last year.  Given the entrenched crony capitalists and special interests supporting wind and solar any shift in direction, even if necessary to protect health and safety, will be a tremendous lift.


Roger Caiazza blogs on New York energy and environmental issues at Pragmatic Environmentalist of New York.  This represents his opinion and not the opinion of any of his previous employers or any other company with which he has been associated.

Wind Power for Beginners

From Science Matters

By Ron Clutz

H/T maxyhoge

Robert Bryce explains the basics at his substack blog Build It, And The Wind Won’t Come.  Excerpts in italics with my bolds and added images.

Weather-dependent generation sources are…weather dependent:
Last year, despite adding 6.2 GW of new capacity,
U.S. wind production dropped by 2.1%.

Three years ago, in the wake of Winter Storm Uri, the alt-energy lobby and their many allies in the media made sure not to blame wind energy for the Texas blackouts. The American Clean Power Association (2021 revenue: $32.1 million) declared frozen wind turbines “did not cause the Texas power outages” because they were “not the primary cause of the blackouts. Most of the power that went offline was powered by gas or coal.”

Damaged wind turbines at the Punta Lima wind project, Naguabo, Puerto Rico, 2018. Photo: Wikipedia.

NPR parroted that line, claiming, “Blaming wind and solar is a political move.” The Texas Tribune said it was wrong to blame alt-energy after Winter Storm Uri because “wind power was expected to make up only a fraction of what the state had planned for during the winter.” The outlet also quoted one academic who said that natural gas was “failing in the most spectacular fashion right now.” Texas Tribune went on to explain, “Only 7% of ERCOT’s forecasted winter capacity, or 6 gigawatts, was expected to come from various wind power sources across the state.”

In other words, there was no reason to expect the 33 GW of wind capacity that Texas had to deliver because, you know, no one expected wind energy to produce much power. Expectations? Mr. October? Playoff Jamal? Who needs them?

But what happens when you build massive amounts of
wind energy capacity and it doesn’t deliver —
not for a day or a week, but for six months, or even an entire year?

That question is germane because, on Wednesday, the Energy Information Administration published a report showing that U.S. wind energy production declined by 2.1% last year. Even more shocking: that decline occurred even though the wind sector added 6.2 GW of new capacity!

A hat tip to fellow Substack writer Roger Pielke Jr., who pithily noted on Twitter yesterday, “Imagine if the U.S. built 6.2 GW new capacity in nuclear power plants and after starting them up, overall U.S. electricity generation went down. That’d be a problem, right?”

Um, yes. It would. And the EIA made that point in its usual dry language. “Generation from wind turbines decreased for the first time since the mid-1990s in 2023 despite the addition of 6.2 GW of new wind capacity last year,” the agency reported. The EIA also explained that the capacity factor for America’s wind energy fleet, also known as the average utilization rate, “fell to an eight-year low of 33.5%.” That compares to 35.9% capacity factor in 2022 which was the all-time high. The report continued, “Lower wind speeds than normal affected wind generation in 2023, especially during the first half of the year when wind generation dropped by 14% compared with the same period in 2022.”

Read that again. For half of last year, wind generation was down by a whopping 14% due to lower wind speeds. Imagine if that wind drought continued for an entire year. That’s certainly possible. Recall that last summer, the North American Electric Reliability Corporation warned that U.S. generation capacity “is increasingly characterized as one that is sensitive to extreme, widespread, and long duration temperatures as well as wind and solar droughts.”

According to Bloomberg New Energy Finance, corporate investment in wind energy between 2004 and 2022 totaled some $278 billion. In addition, according to data from the Treasury Department, the U.S. government spent more than $30 billion on the production tax credit over that same period. Thus, over the last two decades, the U.S. has spent more than $300 billion building 150 GW of wind capacity that has gobbled up massive amounts of land, garnered enormous (and bitter) opposition from rural Americans, and hasn’t gotten more efficient over time.

Wednesday’s EIA report is a stark reminder that all of that generation capacity is subject to the vagaries of the wind. Imagine if the U.S. had spent that same $300 billion on a weather-resilient form of generation, like, say, nuclear power. That’s relevant because Unit 4 at Plant Vogtle in Georgia came online on Monday. With that same $300 billion, the U.S. could have built 20, 30, or maybe even 40 GW of new nuclear reactors with a 92% capacity factor that wouldn’t rely on the whims of the wind. In addition, those dozens of reactors would have required a tiny fraction of the land now covered by thousands of viewshed-destroying, bat-and-bird-killing wind turbines.

If climate change means we will face more extreme weather in the years ahead — hotter, colder, and/or more severe temperatures for extended periods — it’s Total Bonkers CrazytownTM to make our electric grid dependent on the weather. But by lavishing staggering amounts of money on wind and solar energy, and in many cases, mandating wind and solar, that’s precisely what we are doing.