Scientists Discover Plate Tectonics… Again

Spread the love

Guest “Did you know?” by David Middleton

An upwelling of rock beneath the Atlantic may drive continents apart
The Mid-Atlantic Ridge may play a more active role in plate tectonics than thought

By Maria Temming

FEBRUARY 4, 2021

An upsurge of hot rock from deep beneath the Atlantic Ocean may be driving the continents on either side apart.

The Americas are moving away from Europe and Africa by a few centimeters each year, as the tectonic plates underlying those continents drift apart. Researchers typically think tectonic plates separate as the distant edges of those plates sink down into Earth’s mantle, creating a gap (SN: 1/13/21). Material from the upper mantle then seeps up through the rift between the plates to fill in the seafloor.

But new seismic data from the Atlantic Ocean floor show that hot rock is welling up beneath a seafloor rift called the Mid-Atlantic Ridge from hundreds of kilometers deep in Earth’s mantle. This suggests that material rising up under the ridge is not just a passive response to tectonic plates sliding apart. Rather, deep rock pushing toward Earth’s surface may be driving a wedge between the plates that helps separate them, researchers report online January 27 in Nature.

A better understanding of plate tectonics — which causes earthquakes and volcanic eruptions — could help people better prepare for these natural disasters (SN: 9/3/17).

[…]

Science News

Spreading centers drive continents apart? Who could have guessed? Uhm… Just about everyone since at least the late 1960’s.

What drives the plates?
From seismic and other geophysical evidence and laboratory experiments, scientists generally agree with Harry Hess’ theory that the plate-driving force is the slow movement of hot, softened mantle that lies below the rigid plates. This idea was first considered in the 1930s by Arthur Holmes, the English geologist who later influenced Harry Hess’ thinking about seafloor spreading. Holmes speculated that the circular motion of the mantle carried the continents along in much the same way as a conveyor belt. However, at the time that Wegener proposed his theory of continental drift, most scientists still believed the Earth was a solid, motionless body. We now know better. As J. Tuzo Wilson eloquently stated in 1968, “The earth, instead of appearing as an inert statue, is a living, mobile thing.” Both the Earth’s surface and its interior are in motion. Below the lithospheric plates, at some depth the mantle is partially molten and can flow, albeit slowly, in response to steady forces applied for long periods of time. Just as a solid metal like steel, when exposed to heat and pressure, can be softened and take different shapes, so too can solid rock in the mantle when subjected to heat and pressure in the Earth’s interior over millions of years.

The mobile rock beneath the rigid plates is believed to be moving in a circular manner somewhat like a pot of thick soup when heated to boiling. The heated soup rises to the surface, spreads and begins to cool, and then sinks back to the bottom of the pot where it is reheated and rises again. This cycle is repeated over and over to generate what scientists call a convection cell or convective flow. While convective flow can be observed easily in a pot of boiling soup, the idea of such a process stirring up the Earth’s interior is much more difficult to grasp. While we know that convective motion in the Earth is much, much slower than that of boiling soup, many unanswered questions remain: How many convection cells exist? Where and how do they originate? What is their structure?

Convection cannot take place without a source of heat. Heat within the Earth comes from two main sources: radioactive decay and residual heat. Radioactive decay, a spontaneous process that is the basis of “isotopic clocks” used to date rocks, involves the loss of particles from the nucleus of an isotope (the parent) to form an isotope of a new element (the daughter). The radioactive decay of naturally occurring chemical elements — most notably uranium, thorium, and potassium — releases energy in the form of heat, which slowly migrates toward the Earth’s surface. Residual heat is gravitational energy left over from the formation of the Earth — 4.6 billion years ago — by the “falling together” and compression of cosmic debris. How and why the escape of interior heat becomes concentrated in certain regions to form convection cells remains a mystery.

[…]

USGS

Conceptual drawing of assumed convection cells in the mantle (see text). Below a depth of about 700 km, the descending slab begins to soften and flow, losing its form.”

From the time I graduated from college in 1980, up until a few minutes ago (when I read the Science News article), I assumed that every geoscientist knew that mantle convection drove seafloor spreading, which in turn drove continents apart.

However, it appears that this was turned bass-ackwards while I was busy looking for oil & gas, rather than reversing cause and effect. In much the same manner that atmospheric CO2 suddenly became the geological driver of climate change in 1988, subduction apparently became the driver of seafloor spreading…

Until the 1990s, prevailing explanations about what drives plate tectonics have emphasized mantle convection, and most earth scientists believed that seafloor spreading was the primary mechanism. 

Cold, denser material convects downward and hotter, lighter material rises because of gravity; this movement of material is an essential part of convection. In addition to the convective forces, some geologists argue that the intrusion of magma into the spreading ridge provides an additional force (called “ridge push”) to propel and maintain plate movement. Thus, subduction processes are considered to be secondary, a logical but largely passive consequence of seafloor spreading. In recent years however, the tide has turned. Most scientists now favor the notion that forces associated with subduction are more important than seafloor spreading. Professor Seiya Uyeda (Tokai University, Japan), a world-renowned expert in plate tectonics, concluded in his keynote address at a major scientific conference on subduction processes in June 1994 that “subduction . . . plays a more fundamental role than seafloor spreading in shaping the earth’s surface features” and “running the plate tectonic machinery.” The gravity-controlled sinking of a cold, denser oceanic slab into the subduction zone (called “slab pull”) — dragging the rest of the plate along with it — is now considered to be the driving force of plate tectonics.

We know that forces at work deep within the Earth’s interior drive plate motion, but we may never fully understand the details. At present, none of the proposed mechanisms can explain all the facets of plate movement; because these forces are buried so deeply, no mechanism can be tested directly and proven beyond reasonable doubt. The fact that the tectonic plates have moved in the past and are still moving today is beyond dispute, but the details of why and how they move will continue to challenge scientists far into the future.

USGS

via Watts Up With That?

https://ift.tt/3ttcW4l

February 5, 2021 at 12:15PM