CLIMA;_E MODELS AND
CLIMATE MUDDLES

W|II|s Eschenbach

NETZERO

WATCH\

Climate Models and Climate Muddles
Willis Eschenbach

© Copyright 2023, Net Zero Watch

Contents

About the author iii
Acknowledgement iii
1. Introduction 1
2. Stability and instability

3. Hard limits

4. Tuning

2
3
5
5. Etcetera 5
6. Conclusions 8

9

Notes

About the author

Willis Eschenbach has been programming computers for more than 60 years, as well as having
written about climate change for more than a decade.

Acknowledgement

This paper is based on an article originally published at wattsupwiththat.com. Net Zero Watch are
grateful to Anthony Watts for permission to republish.

1. Introduction

Like many climate models, NASA’s GISS Model E was not
designed before construction started. Instead, it has
grown over decades by accretion, with new parts added,
kluges applied to fix problems, ad-hoc changes made
to solve new issues, and the like. Or, to quote one of the
main programmers, Gavin Schmidt, in a paper describing
Model E:

The development of a [climate model] is a continual pro-
cess of minor additions and corrections combined with the
occasional wholesale replacement of particular pieces.

An additional complication is that, as with many
such programs, it's written in the computer language
FORTRAN. This was an excellent choice in 1983 when the
model was born, but is a horrible language for 2023.

How much has the code grown over the last 40 years?
If you exclude the auxiliary files, the FORTRAN code itself
has reached 441,668 lines of code. As a result, it can only
run on a supercomputer. | last looked at the code two
decades ago, but in 2022, | thought I'd look again, to see
how it has changed.

https://journals.ametsoc.org/view/journals/clim/19/2/jcli3612.1.xml

Figure 1: 2017 runs from
the climateprediction.
net climate model.

2, Stability and instability

Modern climate models have a hard time replicating the amaz-
ing stability of the climate system. They are ‘iterative’ models,
meaning that the output of one timestep is used as the input for
the next. As a result, any error in the output of timestep J is car-
ried over as an error in the input into timestep K, and so on ad in-
finitum. This makes it very easy for the model to spiral down into
a’‘snowball earth’or to overheat, making the virtual planet go up
in flames. Figure 1, for example, shows a couple of thousand runs
of a climate model.

Notice, in the upper panel, how many runs fall out the bot-
tom during the control phase. That has never happened with the
real Earth.

To prevent the climate model ‘losing the plot’ and wander-
ing away from reality in this way, a programmer needs to work
out what is wrong with the physics of the model and then fix it.
However, when | first looked at the Model E code 20 years ago,
| found one area where the NASA team were doing something
very different.

22T T
r a
18-
o E
< F
o
A
101~
8
r b
€ °F
o) [
l\ 4%
£ r
o L
c 20
© L
< b
S) e

I
N o
N E

6 10 14 18 22 26 30 34 38 42

Calibration phase Control phase Doubled-CO, phase
Year of simulation

[T T T

0.0% 1.5% 3.0% 4.5% 6.0%

Simulations per 0.1°

Figure 1 Frequency distributions of T 4 (colours indicate density of trajectories per 0.1 K
interval) through the three phases of the simulation. a, Frequency distribution of the 2,017
distinct independent simulations. b, Frequency distribution of the 414 model versions. In
b, T is shown relative to the value at the end of the calibration phase and where initial-
condition ensemble members exist, their mean has been taken for each time point.

http://climateprediction.net
http://climateprediction.net

3. Hard limits

Polynyas are pools of meltwater that form on top of the seasonal
sea ice at the poles. These are important in calculating the reflec-
tivity (‘albedo; in the jargon) of the sea ice, which is an important
factor in determining how much of the sun’s incoming heat is re-
flected straight back upwards. The first time | looked at Model E,
| discovered that polynyas had been a big problem - the model
was suggesting they were present on the ice for far too much
of each year. The model was essentially too hot. However, rather
than work out why, they had simply added a hard time limit on
the number of days during which melt pools could form.

Looking at the code as it is today, it appears that they've
done some work in this area, because | can no longer find the
routine that created that restriction on the number of days. In-
stead there is a new subroutine that sets hard limits on the val-
ues for the albedo for sea ice and melt ponds, as well as specify-
ing constant values for wet and dry snow on the sea ice. Finally,
it also specifies the limits and values for visible light (VIS), and
for five bands of the near infrared (NIR1-5). The code is shown in
Code Block A, for those who are interested (the'c’or theVin a line
indicates a comment).

This means that there is code to calculate the albedo of the
sea ice, but sometimes that code comes up with unrealistic out-
put. But rather than figuring out why, and then fixing the prob-
lem, the NASA team are just replacing the bad value with the cor-
responding maximum or minimum values. Science at its finest!

Code Block A

Cxxxx
lavar
lavar
lavar

parameters used fo
AOImin,AOImax
ASNwet,ASNdry

AMPmin minini
REAL*8 ::

* AOImin(6)=(/

* AOImax(6)=(/

* ASNwet(6)=(/

* ASNdry(6)=(/

* AMPmin(6)=(/

r Schramm sea ice albedo scheme (Hansen)
range for seaice albedo

wet,dry snow albedo over sea ice

mal melt pond albedo

VIS NIR1 NIR2 NIR3 NIR4 NIRS

.05d0, .05d0, .05d0, .050d0, .05d0, .03de/),
.62d0, .42d0, .30d0, .120d0, .05d0, .03de/),
.85d0, .75d0, .50d0, .175d0, .03d0, .01de/),
.90d0, .85d0, .65d0, .450d0, .10d0, .10d0/),
.10d0, .05d0, .05d0, .050d0, .05d0, .03d0/)

Code Block B shows a comment in describing another bit of
melt-pond fun.

Code BlockB

Cx+x* safety valve to ensure that melt ponds eventually disappear (Ti<-10)
if (Ti1 .1t.-10.) pond_melt(i,j)=0. ! refreeze

In plain English, itis saying that if the temperature is less than
—10°C, and the polynya hasn't refrozen, make it refreeze. Without
this bit of code, some of the melt ponds might never refreeze,
no matter how cold it got...you have to love that kind of phys-
ics — water that doesn’t freeze! This is what the climate modellers
mean when they say that their model is ‘physics-based’ They use
the term in the same way Hollywood producers do when they
say a movie is ‘based on a true story’.

Code Block C (which is close enough to plain English for any-
one to understand) is another great comment from the Model E
code.

Code Block C

!@asum tcheck checks for reasonable temperatures
'mauth Ye Cheng/G. Hartke
'Qver 1.0

0

This routine makes sure that the temperature remains within
reasonable bounds during the initialization process. (Sometimes the
the computed temperature iterated out in left field someplace,
way outside any reasonable range.) This routine keeps the temp
between the maximum and minimum of the boundary temperatures.

o o o0 o0 o0

In other words, when the temperature goes off the rails...
don'’t investigate why and fix it. Just set it to a reasonable tem-
perature and keep rolling.

And what is a reasonable temperature? Turns out they just
set it to the temperature of the previous timestep and keep on
keeping on...physics, you know. Code Block D is another.

Code BlockD

ucheck makes sure that the winds remain within reasonable
bounds during the initialization process. (Sometimes the computed
wind speed iterated out in left field someplace, *way* outside
any reasonable range.) Tests and corrects both direction and
magnitude of the wind rotation with altitude. Tests the total
wind speed via comparison to similarity theory. Note that it
works from the top down so that it can assume that at level (i),
level (i+1) displays reasonable behavior.

4

So once again, the climate model goes off the rails: the wind
is blowing at five hundred miles per hour. But don’t look for the
reason why; just prop it up, put it back on the rails, and...keep

going.

4.Tuning

Tunable parameters are a completely different class of non-
physics. Here'’s a description from the Gavin Schmidt paper cited
above:

The model is tuned (using the threshold relative humidity...for
the initiation of ice and water clouds) to be in global radiative bal-
ance (i.e., net radiation at [the top of the atmosphere] within £0.5
W m-2 of zero) and a reasonable planetary albedo (between 29%
and 31%) for the control run simulations.

Translating that into plain English, in the model, the sun’s in-
coming heat doesn’t end up in equilibrium with the heat escap-
ing to space, so the virtual Earth in the model either overheats or
turns into a snowball. The solution applied is to adjust a param-
eter buried deep in the model until equilibrium is reached. You
simply turn the tuning knob and presto! It all works fine!

In fact, the tuning knob worked so well that they put in two
more...plus another hard limit (see Code Block E):

Code Block E

!@ddbparam UGGa tuning knob for UGG above 850 mb without moist convection
!@ddbparam UGGb tuning knob for UOGO below 850 mb and in convective regions
ladbparam MAXCTOP max cloud top pressure

All models are subjected to what | call ‘evolutionary tuning’;
the process whereby a change is made, and then the model is
tested against the only thing we have to test it against — the his-
torical record. If the model is better able to replicate the historical
record, then the change is kept. But if the change makes it work
worse at‘hindcasting; it's thrown out.

Unfortunately, as the stockbrokers’ads in the US are required
by law to say, ‘Past performance is no guarantee of future suc-
cess’ The fact that a climate model can hindcast (reproduce the
past) means absolutely nothing about whether it can success-
fully predict the future. This is particularly true when the model
is propped up and kept from falling over by hard limits and tun-
able parameters, and then evolutionarily tuned to reproduce the
past...

5. Etcetera

What else is going on? Well, as in many such ad-hoc projects,
the Model E team have ended up with a single variable name
representing two different things in different parts of the pro-

5

Code BlockF

SUBR
SUBR
SUBR
SUBR

SS
SS

ns
ns

nn
nn
nn

ndr
ndr

Mo =

ks
ks

H -
(GRS

identifies after
identifies where
identifies where
identifies where

photodissociation
SIN(lat)*SIN(dec)

either 1 or 2 from reactn sub
either ns or 2 from guide sub i2 newfam ifam dummy variables

either nn or ks from reactn sub
either nn or nnn from guide sub
name of species that reacts, as defined in the MOLEC file.

either ndr or npr from guide sub
either nds or ndnr from reactn sub

lower mass bound for first size bin (kg)
total mass of condensed OA at equilibrium (ug m-3)

local variable to be passed back to jplrts nnr or nn array.
name of species that photolyses, as defined in the MOLEC file.

dummy loop variables
GCM grid box horizontal position

which subroutine WATER was called
CHECK was called from
CHECK3 was called from
CHECK4 was called from

coefficient, indicies

gram, which may or may not be a problem, but is a dangerous
programming practice that can lead to unseen bugs. (Note that
FORTRAN is not ‘case sensitive, so ‘ss’ is the same variable as‘SS’;
there is nothing to stop the programmer using both, in different
parts of the program, but this is highly inadvisable.) Code Block F
shows some of these duplicate variable names.

Finally, there’s the problem of the model failing to conserve
energy and mass. Code Block G shows one way it’s handled...

Curiously, the subroutine ‘addEnergyAsDiffuseHeat’ is de-
fined twice in different parts of the program...but | digress.
When energy is not conserved, what the code does is simply take
the difference and spread it equally all over the globe. Now, a

Code Block G

C+*%% This fix adjusts thermal energy to conserve total energy TE=KE+PE
finalTotalEnergy
call addEnergyAsDiffuseHeat(finalTotalEnergy - initialTotalEnergy)

getTotalEnergy()

6

Figure 2: Murphy gauge

ot SWiCy,

3
PS.AD. CeN N

20 30
A0 90 S

TR

NV 2
\'.Pa.xl“,

DIFFNREN /AL

Qt Chs

subroutine like this is necessary because computers are only ac-
curate to a certain number of decimals. Rounding errors are in-
evitable. The method used is not unreasonable. However, twenty
years ago | asked Gavin Schmidt if he had some kind of ‘Murphy
gauge’ on this subroutine to stop the program if the energy im-
balance was larger than some threshold. (A Murphy gauge gives
an alarm if some user-set value is exceeded; see Figure 2). With-
out such a gauge, the model could be either gaining or losing a
large amount of energy without anyone noticing. Gavin said no,
he didn’t have any alarm to stop the program if the energy imbal-
ance was too large. So | asked him how large the imbalance usu-
ally was. He said he didn’t know.

So revisiting the code 20 years later, once again | looked for
such a’Murphy gauge’...but | couldn’t find one. I've searched the
subroutine ‘addEnergyAsDiffuseHeat’ and the surrounds, as well

as looking for all kinds of keywords, such as ‘energy

I
I

‘kinetic) ‘po-

tential, ‘thermal; as well as for the FORTRAN instruction ‘STOP’
which stops the run, and ‘'STOP_MODEL which is their subroutine
to halt the model run under certain conditions and then print out
a diagnostic error message.

In Model E there are 846 calls to ‘STOP_MODEL for all kinds
of things - lakes without water, problems with files, ‘mass diag-
nostic error, ‘pressure diagnostic error; solar zenith angle not in
the range [0.0 to 1.0], infinite loops, and ocean variables out of
bounds. One STOP_MODEL call actually prints out ‘Please dou-
ble-check something or another, while one of my personal fa-
vourites calls a halt when there is ‘negative cloud cover’ or‘nega-

tive snow depth’ | hate it when those happen...

And this is all a very good thing. These are Murphy gauges,
designed to stop the model when it goes off the rails. They are an
important and necessary part of any such model. But | couldn’t
find any Murphy gauge for the subroutine that takes excess or in-
sufficient energy and sprinkles it evenly around the planet. Now,
to be fair, there are 441,668 lines of code, and it's very poorly
commented...so it might be there, but | couldn’t track it down.

7

https://www.fwmurphy.com/products/gauges

6. Conclusions

| wrote my first computer program over a half-century
ago, and have written uncountable programs since. On my
computer right now, | have over 2000 programs | wrote in
the computer language R, with a total of over 230,000 lines
of code. I've forgotten more computer languages than |
speak, but I am (or at one time was) fluent in C/C++, Hyper-
talk, Mathematica (three languages), VectorScript, Basic,
Algol, VBA, Pascal, FORTRAN, COBOL, Lisp, LOGO, Datacom,
and R. I've done all of the computer analysis for the ~1,000
posts that I've written for the WattsUpWithThat website.
I've written programs to do everything from testing black-
jack systems, to providing the CAD/CAM files for cutting
the parts for three 80’ steel fishing boats, to a bidding sys-
tem for complete house construction, to creating the pat-
terns for cutting and assembling a 15-meter catenary tent,
to...well, the program that | wrote today to search for key-
words in the code for the GISS Model E climate model. So
regarding programming, | know whereof | speak.

Next, regarding models. On my planet, | distinguish
two kinds of model: single-pass and iterative models. Sin-
gle-pass models take a variety of inputs, perform some
operations on them, and produce some outputs. Iterative
models, on the other hand, take a variety of inputs, per-
form some operations on them, and produce some out-
puts, but, unlike single-pass models, then use those out-
puts as inputs to the next iteration; the process is then
repeated over and over to give a final answer.

There are a couple of very large challenges with itera-
tive models. First, as | discussed above, they're generally
sensitive and touchy as can be. This is because any error
in the output becomes an error in the input, making them
unstable. And, as also mentioned above, there are two
ways to fix that — correct the code, or include guardrails to
keep it from going off the rails. The right way is to correct
it...which leads us to the second challenge.

The second challenge is that iterative models are very
opaque. Weather models and climate models are iterative.
Climate models typically run on a half-hour timestep. This
means that if a climate model predicting, say, 50 years into
the future, the computer will go through 48 steps per day
times 365 days per year, times 50 years, or 876,000 itera-
tions. And if it comes out with an answer that makes no
sense, or defies physics, how can we find out where it went
off the rails?

Please be clear that I'm not picking on the GISS model.
These same issues, to a greater or lesser degree, exist with-
in all large complex iterative models. I'm simply pointing
out that these are not ‘physics-based’ - they are propped
up and fenced in to keep them from crashing.

8

https://wattsupwiththat.com/2012/01/26/decimals-of-precision-trenberths-missing-heat/
https://wattsupwiththat.com/2012/01/26/decimals-of-precision-trenberths-missing-heat/

In conclusion, a half-century of programming and
decades of studying the climate have taught me a few
things:

« All a computer model can do is make visible and glorify
the under- and, more importantly, the misunder-standings
of the programmers. If you write a model under the belief
that CO, controls the temperature...guess what you'll get?

+ As the scholar of semantics Alfred Korzybski famous-
ly said, ‘the map is not the territory’. He used the phrase
to poetically express the idea that people often confuse
models of reality with reality itself. Climate modellers have
this problem in spades, far too often discussing their re-
sults as if they were real-world facts.

« The climate is far and away the most complex system
we've ever tried to model. It contains at least six subsys-
tems — atmosphere, biosphere, hydrosphere, lithosphere,
cryosphere, and electrosphere. All of these have internal
reactions, forces, resonances, and cycles, and they all in-
teract with all of the others. The system is subject to var-
iable forces from both within and without. My First Rule
of Climate says ‘In the climate, everything is connected to
everything else...which in turn is connected to everything
else...except when it isn't!

« We've only just started to try to model the climate.

« Iterative models are not to be trusted. Ever. Yes, modern
airplanes are designed using iterative models...but the
designers still use wind tunnels to test the results. Unfor-
tunately, we have nothing that corresponds to a‘wind tun-
nel’ for the climate.

« The first rule of buggy computer code is, when you
squash one bug, you probably create two others.

« Complexity is not Reliability. Often a simple model will
give better answers than a complex model.

Bottom line? The current crop of computer climate models
(which should really be referred to as ‘climate muddles’) is
far from being fit to be used to decide public policy. To ver-
ify this, you only need to look at the endless string of bad,
failed, crashed-and-burned predictions that they have pro-
duced. Pay them no attention. They are not ‘physics-based’
exceptin the Hollywood sense, and they are far from ready
for prime time. Their main use is to add false legitimacy to
the unrealistic fears of the programmers.

Notes
1 https://journals.ametsoc.org/view/journals/clim/19/2/
jcliz612.1.xml.

9

https://nypost.com/2021/11/12/50-years-of-predictions-that-the-climate-apocalypse-is-nigh/
https://nypost.com/2021/11/12/50-years-of-predictions-that-the-climate-apocalypse-is-nigh/
https://journals.ametsoc.org/view/journals/clim/19/2/jcli3612.1.xml
https://journals.ametsoc.org/view/journals/clim/19/2/jcli3612.1.xml

10

o R e

. AEiE —
AT 2 g H -
; o T
@ = e
A 11 i
s i i _ :
- B T T
Eae L R o i
Py o Swedo o, ﬂ
1 1Y 3 R E R -
[- * i =
"
- - - - - - = EaiEoE @ I-
-
R AT IT A N TR T T R
T Brp x
FiFd f
L T e
3 H ! - -
e L L
BRLGE a3
e PR fa A 2
BT e YRy 3
rer i L T R L] e " Timancm
. e
R e L S M R P
= —_—
B i
3 L...wu..h T LT
e e P
r

EERTTTE R

-

ik
£ |

Ry,
ion abc
s

=

mation

visit our website at www.ne

For further irﬁ’of

