From UC Santa Cruz News Center

A global assessment of the impact of groundwater on ocean chemistry is important for understanding the weathering of rocks and its effects on climate

January 08, 2021

By Tim Stephens

Coastal groundwater discharge can sometimes be seen at low tide as rivulets flowing into the ocean, as on this beach on Oahu. (Photo by Jenny Bernier)
Groundwater discharge flows through the sand on an Oahu beach. A global assessment found groundwater discharge plays a more significant role in ocean chemistry than had been thought. (Photo by Jenny Bernier)
Kimberly Mayfield prepares groundwater samples for lithium isotope analysis in a clean lab at the Czech Geological Survey in Prague. (Photo by Tomas Magna)

An invisible flow of groundwater seeps into the ocean along coastlines all over the world. Scientists have tended to disregard its contributions to ocean chemistry, focusing on the far greater volumes of water and dissolved material entering the sea from rivers and streams, but a new study finds groundwater discharge plays a more significant role than had been thought.

The new findings, published January 8 in Nature Communications, have implications for global models of biogeochemical cycles and for the interpretation of isotope records of Earth’s climate history.

“It’s really hard to characterize groundwater discharge, so it has been a source of uncertainty in the modeling of global cycles,” said first author Kimberley Mayfield, who led the study as a graduate student at UC Santa Cruz. “It took a large effort by researchers around the world who came together to make this happen.”

The researchers focused on five key elements—lithium, magnesium, calcium, strontium, and barium—measuring concentrations and isotope ratios in coastal groundwater at 20 sites around the world, and using previously published data from additional sites.

“Those elements are important because they come from the weathering of rocks, and weathering of silicate rocks accounts for a huge uptake of carbon dioxide from the atmosphere over long time scales,” Mayfield explained.

Coauthor Adina Paytan, a research professor in UCSC’s Institute of Marine Sciences, said groundwater is an important source of inputs to the oceans, but has been easy to ignore because it is unseen and hard to measure.

“This is the first global assessment of groundwater discharge for most of these elements,” Paytan said. “This information is useful for our understanding of how weathering of rock is related to climate, not only in the present but also in the past.”

Full article here

via Watts Up With That?

https://ift.tt/3q5HSVQ

January 12, 2021 at 12:56AM